TPCDS
使用须知
TPCDS Catalog 通过 Trino Connector 兼容框架,使用 TPCDS Connector 来快速构建 TPCDS 测试集。
该功能自 Doris 3.0.0 版本开始支持。
编译 TPCDS Connector
需要 JDK 17 版本。
git clone https://github.com/trinodb/trino.git
git checkout 435
cd trino/plugin/trino-tpcds
mvn clean install -DskipTest
完成编译后,会在 trino/plugin/trino-tpcds/target/
下得到 trino-tpcds-435/
目录。
也可以直接下载预编译的 trino-tpcds-435.tar.gz 并解压。
部署 TPCDS Connector
将 trino-tpcds-435/
目录放到所有 FE 和 BE 部署路径的 connectors/
目录下。(如果没有,可以手动创建)。
├── bin
├── conf
├── connectors
│ ├── trino-tpcds-435
...
部署完成后,建议重启 FE、BE 节点以确保 Connector 可以被正确加载。
创建 TPCDS Catalog
CREATE CATALOG `tpcds` PROPERTIES (
"type" = "trino-connector",
"trino.connector.name" = "tpcds",
"trino.tpcds.split-count" = "32"
);
其中 tpcds.split-count
为并发数,建议设置为 BE 单机核数的 2 倍,可以获得最优的并发度。提升数据生成效率。
使用 TPCDS Catalog
TPCDS Catalog 中预制了不同 Scale Factor 的 TPCDS 数据集,可以通过 SHOW DATABASES
和 SHOW TABLES
命令查看。
mysql> SWITCH tpcds;
Query OK, 0 rows affected (0.00 sec)
mysql> SHOW DATABASES;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| sf1 |
| sf100 |
| sf1000 |
| sf10000 |
| sf100000 |
| sf300 |
| sf3000 |
| sf30000 |
| tiny |
+--------------------+
11 rows in set (0.00 sec)
mysql> USE sf1;
mysql> SHOW TABLES;
+------------------------+
| Tables_in_sf1 |
+------------------------+
| call_center |
| catalog_page |
| catalog_returns |
| catalog_sales |
| customer |
| customer_address |
| customer_demographics |
| date_dim |
| dbgen_version |
| household_demographics |
| income_band |
| inventory |
| item |
| promotion |
| reason |
| ship_mode |
| store |
| store_returns |
| store_sales |
| time_dim |
| warehouse |
| web_page |
| web_returns |
| web_sales |
| web_site |
+------------------------+
25 rows in set (0.00 sec)
通过 SELECT 语句可以直接查询这些表。
这些预制数据集的数据,并没有实际存储,而是在查询时实时生成的。所以这些预制数据集不适合用来直接进行 Benchmark 测试。适用于通过 INSERT INTO SELECT
将数据集写入到其他目的表(如 Doris 内表、Hive、Iceberg 等所有 Doris 支持写入的数据源)后,对目的表进行性能测试。
最佳实践
快速构建 TPCDS 测试数据集
可以通过 CTAS 语句快速构建一个 TPCDS 测试数据集:
CREATE TABLE hive.tpcds100.call_center PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.call_center ;
CREATE TABLE hive.tpcds100.catalog_page PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.catalog_page ;
CREATE TABLE hive.tpcds100.catalog_returns PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.catalog_returns ;
CREATE TABLE hive.tpcds100.catalog_sales PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.catalog_sales ;
CREATE TABLE hive.tpcds100.customer PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.customer ;
CREATE TABLE hive.tpcds100.customer_address PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.customer_address ;
CREATE TABLE hive.tpcds100.customer_demographics PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.customer_demographics ;
CREATE TABLE hive.tpcds100.date_dim PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.date_dim ;
CREATE TABLE hive.tpcds100.dbgen_version PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.dbgen_version ;
CREATE TABLE hive.tpcds100.household_demographics PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.household_demographics;
CREATE TABLE hive.tpcds100.income_band PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.income_band ;
CREATE TABLE hive.tpcds100.inventory PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.inventory ;
CREATE TABLE hive.tpcds100.item PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.item ;
CREATE TABLE hive.tpcds100.promotion PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.promotion ;
CREATE TABLE hive.tpcds100.reason PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.reason ;
CREATE TABLE hive.tpcds100.ship_mode PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.ship_mode ;
CREATE TABLE hive.tpcds100.store PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.store ;
CREATE TABLE hive.tpcds100.store_returns PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.store_returns ;
CREATE TABLE hive.tpcds100.store_sales PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.store_sales ;
CREATE TABLE hive.tpcds100.time_dim PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.time_dim ;
CREATE TABLE hive.tpcds100.warehouse PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.warehouse ;
CREATE TABLE hive.tpcds100.web_page PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.web_page ;
CREATE TABLE hive.tpcds100.web_returns PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.web_returns ;
CREATE TABLE hive.tpcds100.web_sales PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.web_sales ;
CREATE TABLE hive.tpcds100.web_site PROPERTIES("file_format" = "parquet") AS SELECT * FROM tpcds.sf100.web_site ;
在包含 3 个 16C BE 节点的 Doris 集群上,创建一个 TPCDS 1000 的 Hive 数据集,大约需要 3 到 4 个小时。