Logstash Doris Output Plugin
Logstash Doris output plugin
介绍
Logstash 是一个日志ETL框架(采集,预处理,发送到存储系统),它支持自定义输出插件将数据写入存储系统,Logstash Doris output plugin 是输出到 Doris 的插件。
Logstash Doris output plugin 调用 Doris Stream Load HTTP 接口将数据实时写入 Doris,提供多线程并发,失败重试,自定义 Stream Load 格式和参数,输出写入速度等能力。
使用 Logstash Doris output plugin 主要有三个步骤:
- 将插件安装到 Logstash 中
- 配置 Doris 输出地址和其他参数
- 启动 Logstash 将数据实时写入 Doris
安装
获取插件
可以从官网下载或者自行从源码编译 Logstash Doris output plugin。
从官网下载
从源码编译
cd extension/logstash/
gem build logstash-output-doris.gemspec
安装插件
- 普通安装
${LOGSTASH_HOME} 是 Logstash 的安装目录,运行它下面的 bin/logstash-plugin 命令安装插件
${LOGSTASH_HOME}/bin/logstash-plugin install logstash-output-doris-1.0.0.gem
Validating logstash-output-doris-1.0.0.gem
Installing logstash-output-doris
Installation successful
普通安装模式会自动安装插件依赖的 ruby 模块,对于网络不通的情况会卡住无法完成,这种情况下可以下载包含依赖的zip安装包进行完全离线安装,注意需要用 file:// 指定本地文件系统。
- 离线安装
${LOGSTASH_HOME}/bin/logstash-plugin install file:///tmp/logstash-output-doris-1.0.0.zip
Installing file: logstash-output-doris-1.0.0.zip
Resolving dependencies.........................
Install successful
参数配置
Logstash Doris output plugin 的配置如下:
配置 | 说明 |
---|---|
http_hosts | Stream Load HTTP 地址,格式是字符串数组,可以有一个或者多个元素,每个元素是 host:port。 例如:["http://fe1:8030", "http://fe2:8030"] |
user | Doris 用户名,该用户需要有doris对应库表的导入权限 |
password | Doris 用户的密码 |
db | 要写入的 Doris 库名 |
table | 要写入的 Doris 表名 |
label_prefix | Doris Stream Load Label 前缀,最终生成的 Label 为 {labelprefix}{db}{table}{yyyymmddhhmmss}{uuid} ,默认值是 logstash |
headers | Doris Stream Load 的 headers 参数,语法格式为 ruby map,例如:headers => { "format" => "json" "read_json_by_line" => "true" } |
mapping | Logstash 字段到 Doris 表字段的映射, 参考后续章节的使用示例 |
message_only | 一种特殊的 mapping 形式,只将 Logstash 的 @message 字段输出到 Doris,默认为 false |
max_retries | Doris Stream Load 请求失败重试次数,默认为 -1 无限重试保证数据可靠性 |
log_request | 日志中是否输出 Doris Stream Load 请求和响应元数据,用于排查问题,默认为 false |
log_speed_interval | 日志中输出速度的时间间隔,单位是秒,默认为 10,设置为 0 可以关闭这种日志 |
使用示例
TEXT 日志采集示例
该示例以 Doris FE 的日志为例展示 TEXT 日志采集。
1. 数据
FE 日志文件一般位于 Doris 安装目录下的 fe/log/fe.log 文件,是典型的 Java 程序日志,包括时间戳,日志级别,线程名,代码位置,日志内容等字段。不仅有正常的日志,还有带 stacktrace 的异常日志,stacktrace 是跨行的,日志采集存储需要把主日志和 stacktrace 组合成一条日志。
2024-07-08 21:18:01,432 INFO (Statistics Job Appender|61) [StatisticsJobAppender.runAfterCatalogReady():70] Stats table not available, skip
2024-07-08 21:18:53,710 WARN (STATS_FETCH-0|208) [StmtExecutor.executeInternalQuery():3332] Failed to run internal SQL: OriginStatement{originStmt='SELECT * FROM __internal_schema.column_statistics WHERE part_id is NULL ORDER BY update_time DESC LIMIT 500000', idx=0}
org.apache.doris.common.UserException: errCode = 2, detailMessage = tablet 10031 has no queryable replicas. err: replica 10032's backend 10008 does not exist or not alive
at org.apache.doris.planner.OlapScanNode.addScanRangeLocations(OlapScanNode.java:931) ~[doris-fe.jar:1.2-SNAPSHOT]
at org.apache.doris.planner.OlapScanNode.computeTabletInfo(OlapScanNode.java:1197) ~[doris-fe.jar:1.2-SNAPSHOT]
2. 建表
表结构包括日志的产生时间,采集时间,主机名,日志文件路径,日志类型,日志级别,线程名,代码位置,日志内容等字段。
CREATE TABLE `doris_log` (
`log_time` datetime NULL COMMENT 'log content time',
`collect_time` datetime NULL COMMENT 'log agent collect time',
`host` text NULL COMMENT 'hostname or ip',
`path` text NULL COMMENT 'log file path',
`type` text NULL COMMENT 'log type',
`level` text NULL COMMENT 'log level',
`thread` text NULL COMMENT 'log thread',
`position` text NULL COMMENT 'log code position',
`message` text NULL COMMENT 'log message',
INDEX idx_host (`host`) USING INVERTED COMMENT '',
INDEX idx_path (`path`) USING INVERTED COMMENT '',
INDEX idx_type (`type`) USING INVERTED COMMENT '',
INDEX idx_level (`level`) USING INVERTED COMMENT '',
INDEX idx_thread (`thread`) USING INVERTED COMMENT '',
INDEX idx_position (`position`) USING INVERTED COMMENT '',
INDEX idx_message (`message`) USING INVERTED PROPERTIES("parser" = "unicode", "support_phrase" = "true") COMMENT ''
) ENGINE=OLAP
DUPLICATE KEY(`log_time`)
COMMENT 'OLAP'
PARTITION BY RANGE(`log_time`) ()
DISTRIBUTED BY RANDOM BUCKETS 10
PROPERTIES (
"replication_num" = "1",
"dynamic_partition.enable" = "true",
"dynamic_partition.time_unit" = "DAY",
"dynamic_partition.start" = "-7",
"dynamic_partition.end" = "1",
"dynamic_partition.prefix" = "p",
"dynamic_partition.buckets" = "10",
"dynamic_partition.create_history_partition" = "true",
"compaction_policy" = "time_series"
);
3. Logstash 配置
Logstash 主要有两类配置文件,一类是整个 Logstash 的配置文件,另一类是某个日志采集的配置文件。
整个 Logstash 的配置文件通常在 config/logstash.yml,为了提升写入 Doris 的性能需要修改 batch 大小和攒批时间,对于平均每条i几百字节的日志,推荐 100 万行和 10s 。
pipeline.batch.size: 1000000
pipeline.batch.delay: 10000
某个日志采集的配置文件如 logstash_doris_log.conf 主要由 3 部分组成,分别对应 ETL 的各个部分:
- input 负责读取原始数据
- filter 负责做数据转换
- output 负责将数据输出
# 1. input 负责读取原始数据
# file input 是一个 input plugin,可以配置读取的日志文件路径,通过 multiline codec 将非时间开头的行拼接到上一行后面,实现 stacktrace 和主日志合并的效果。file input 会将日志内容保存在 @message 字段中,另外还有一些元数据字段比如 host,log.file.path,这里我们还通过 add_field 手动添加了一个字段 type,它的值为 fe.log 。
input {
file {
path => "/mnt/disk2/xiaokang/opt/doris_master/fe/log/fe.log"
add_field => {"type" => "fe.log"}
codec => multiline {
# valid line starts with timestamp
pattern => "^%{TIMESTAMP_ISO8601} "
# any line not starting with a timestamp should be merged with the previous line
negate => true
what => "previous"
}
}
}
# 2. filter 部分负责数据转换
# grok 是一个常用的数据转换插件,它内置了一些常见的pattern 比如 TIMESTAMP_ISO8601 解析时间戳,还支持写正则表达式提取字段。
filter {
grok {
match => {
# parse log_time, level, thread, position fields from message
"message" => "%{TIMESTAMP_ISO8601:log_time} (?<level>[A-Z]+) \((?<thread>[^\[]*)\) \[(?<position>[^\]]*)\]"
}
}
}
# 3. output 部分负责数据输出
# doris output 将数据输出到 Doris,使用的是 Stream Load HTTP 接口。通过 headers 参数指定了 Stream Load 的数据格式为 JSON,通过 mapping 参数指定 Logstash 字段到 JSON 字段的映射。由于 headers 指定了 "format" => "json",Stream Load 会自动解析 JSON 字段写入对应的 Doris 表的字段。
output {
doris {
http_hosts => ["http://localhost:8630"]
user => "root"
password => ""
db => "log_db"
table => "doris_log"
headers => {
"format" => "json"
"read_json_by_line" => "true"
"load_to_single_tablet" => "true"
}
mapping => {
"log_time" => "%{log_time}"
"collect_time" => "%{@timestamp}"
"host" => "%{[host][name]}"
"path" => "%{[log][file][path]}"
"type" => "%{type}"
"level" => "%{level}"
"thread" => "%{thread}"
"position" => "%{position}"
"message" => "%{message}"
}
log_request => true
}
}
4. 运行 Logstash
${LOGSTASH_HOME}/bin/logstash -f config/logstash_doris_log.conf
# log_request 为 true 时日志会输出每次 Stream Load 的请求参数和响应结果
[2024-07-08T22:35:34,772][INFO ][logstash.outputs.doris ][main][e44d2a24f17d764647ce56f5fed24b9bbf08d3020c7fddcc3298800daface80a] doris stream load response:
{
"TxnId": 45464,
"Label": "logstash_log_db_doris_log_20240708_223532_539_6c20a0d1-dcab-4b8e-9bc0-76b46a929bd1",
"Comment": "",
"TwoPhaseCommit": "false",
"Status": "Success",
"Message": "OK",
"NumberTotalRows": 452,
"NumberLoadedRows": 452,
"NumberFilteredRows": 0,
"NumberUnselectedRows": 0,
"LoadBytes": 277230,
"LoadTimeMs": 1797,
"BeginTxnTimeMs": 0,
"StreamLoadPutTimeMs": 18,
"ReadDataTimeMs": 9,
"WriteDataTimeMs": 1758,
"CommitAndPublishTimeMs": 18
}
# 默认每隔 10s 会日志输出速度信息,包括自启动以来的数据量(MB 和 ROWS),总速度(MB/s 和 R/S),最近 10s 速度
[2024-07-08T22:35:38,285][INFO ][logstash.outputs.doris ][main] total 11 MB 18978 ROWS, total speed 0 MB/s 632 R/s, last 10 seconds speed 1 MB/s 1897 R/s
JSON 日志采集示例
该样例以 github events archive 的数据为例展示 JSON 日志采集。
1. 数据
github events archive 是 github 用户操作事件的归档数据,格式是 JSON,可以从 https://www.gharchive.org/ 下载,比如下载 2024年1月1日15点的数据。
wget https://data.gharchive.org/2024-01-01-15.json.gz
下面是一条数据样例,实际一条数据一行,这里为了方便展示进行了格式化。
{
"id": "37066529221",
"type": "PushEvent",
"actor": {
"id": 46139131,
"login": "Bard89",
"display_login": "Bard89",
"gravatar_id": "",
"url": "https://api.github.com/users/Bard89",
"avatar_url": "https://avatars.githubusercontent.com/u/46139131?"
},
"repo": {
"id": 780125623,
"name": "Bard89/talk-to-me",
"url": "https://api.github.com/repos/Bard89/talk-to-me"
},
"payload": {
"repository_id": 780125623,
"push_id": 17799451992,
"size": 1,
"distinct_size": 1,
"ref": "refs/heads/add_mvcs",
"head": "f03baa2de66f88f5f1754ce3fa30972667f87e81",
"before": "85e6544ede4ae3f132fe2f5f1ce0ce35a3169d21"
},
"public": true,
"created_at": "2024-04-01T23:00:00Z"
}
2. Doris 建表
CREATE DATABASE log_db;
USE log_db;
CREATE TABLE github_events
(
`created_at` DATETIME,
`id` BIGINT,
`type` TEXT,
`public` BOOLEAN,
`actor.id` BIGINT,
`actor.login` TEXT,
`actor.display_login` TEXT,
`actor.gravatar_id` TEXT,
`actor.url` TEXT,
`actor.avatar_url` TEXT,
`repo.id` BIGINT,
`repo.name` TEXT,
`repo.url` TEXT,
`payload` TEXT,
`host` TEXT,
`path` TEXT,
INDEX `idx_id` (`id`) USING INVERTED,
INDEX `idx_type` (`type`) USING INVERTED,
INDEX `idx_actor.id` (`actor.id`) USING INVERTED,
INDEX `idx_actor.login` (`actor.login`) USING INVERTED,
INDEX `idx_repo.id` (`repo.id`) USING INVERTED,
INDEX `idx_repo.name` (`repo.name`) USING INVERTED,
INDEX `idx_host` (`host`) USING INVERTED,
INDEX `idx_path` (`path`) USING INVERTED,
INDEX `idx_payload` (`payload`) USING INVERTED PROPERTIES("parser" = "unicode", "support_phrase" = "true")
)
ENGINE = OLAP
DUPLICATE KEY(`created_at`)
PARTITION BY RANGE(`created_at`) ()
DISTRIBUTED BY RANDOM BUCKETS 10
PROPERTIES (
"replication_num" = "1",
"compaction_policy" = "time_series",
"enable_single_replica_compaction" = "true",
"dynamic_partition.enable" = "true",
"dynamic_partition.create_history_partition" = "true",
"dynamic_partition.time_unit" = "DAY",
"dynamic_partition.start" = "-30",
"dynamic_partition.end" = "1",
"dynamic_partition.prefix" = "p",
"dynamic_partition.buckets" = "10",
"dynamic_partition.replication_num" = "1"
);
3. Logstash 配置
这个配置文件和之前 TEXT 日志采集不同的有下面几点:
- file input 的 codec 参数是 json,Logstash 会将每一行文本当作 JSON 格式解析,解析出来的字段用于后续处理
- 没有用 filter plugin,因为不需要额外的处理转换
input {
file {
path => "/tmp/github_events/2024-04-01-23.json"
codec => json
}
}
output {
doris {
http_hosts => ["http://fe1:8630", "http://fe2:8630", "http://fe3:8630"]
user => "root"
password => ""
db => "log_db"
table => "github_events"
headers => {
"format" => "json"
"read_json_by_line" => "true"
"load_to_single_tablet" => "true"
}
mapping => {
"created_at" => "%{created_at}"
"id" => "%{id}"
"type" => "%{type}"
"public" => "%{public}"
"actor.id" => "%{[actor][id]}"
"actor.login" => "%{[actor][login]}"
"actor.display_login" => "%{[actor][display_login]}"
"actor.gravatar_id" => "%{[actor][gravatar_id]}"
"actor.url" => "%{[actor][url]}"
"actor.avatar_url" => "%{[actor][avatar_url]}"
"repo.id" => "%{[repo][id]}"
"repo.name" => "%{[repo][name]}"
"repo.url" => "%{[repo][url]}"
"payload" => "%{[payload]}"
"host" => "%{[host][name]}"
"path" => "%{[log][file][path]}"
}
log_request => true
}
}
4. 运行 Logstash
${LOGSTASH_HOME}/bin/logstash -f logstash_github_events.conf