SQL 方言转换
从 2.1 版本开始,Doris 可以支持多种 SQL 方言,如 Presto、Trino、Hive、PostgreSQL、Spark、Clickhouse 等等。通过这个功能,用户可以直接使用对应的 SQL 方言查询 Doris 中的数据,方便用户将原先的业务平滑的迁移到 Doris 中。
该功能目前是实验性功能,您在使用过程中如遇到任何问题,欢迎通过邮件组、GitHub Issue 等方式进行反馈。
部署服务
-
下载最新版本的 SQL Convertor
信息SQL 方言转换工具基于开源的 SQLGlot ,由 SelectDB 进行二次开发,关于 SQLGlot 可参阅 SQLGlot 官网。
SQL Convertor 并非由 Apache Doris 维护或认可,这些工作由 Committers 和 Doris PMC 监督。使用这些资源和服务完全由您自行决定,社区不负责验证这些工具的许可或有效性。
-
在任意 FE 节点,通过以下命令启动服务:
# 配置服务端口
vim apiserver/conf/config.conf
# 启动 SQL Converter for Apache Doris 转换服务
sh apiserver/bin/start.sh
# 如需前端界面,可在 webserver 中配置相应的端口并启动,不需要前端则可以忽略以下操作
vim webserver/conf/config.conf
# 启动前端界面
sh webserver/bin/start.sh提示-
该服务是一个无状态的服务,可随时启停
-
在
apiserver/conf/config.conf
中配置 port 来指定任意一个可用端口,配置 workers 来指定启动的线程数量。在并发场景中,可以根据需要调整,默认为 1 -
建议在每个 FE 节点都单独启动一个服务
-
如需启动前端界面,可以在
webserver/conf/config.conf
中配置 SQL Converter for Apache Doris 转换服务地址,默认是API_HOST=http://127.0.0.1:5001
-
-
启动 Doris 集群(2.1 或更高版本)
-
通过以下命令,在 Doris 中设置 SQL 方言转换服务的 URL:
MySQL> set global sql_converter_service_url = "http://127.0.0.1:5001/api/v1/convert"
127.0.0.1:5001
是 SQL 方言转换服务的部署节点 ip 和端口。
使用 SQL 方言
目前支持的方言类型包括:
-
presto
-
trino
-
clickhouse
-
hive
-
spark
-
postgres
示例:
Presto
CREATE TABLE test_sqlconvert (
id INT,
start_time DATETIME,
value STRING,
arr_int ARRAY<INT>,
arr_str ARRAY<STRING>
) ENGINE=OLAP
DUPLICATE KEY(`id`)
COMMENT 'OLAP'
DISTRIBUTED BY HASH(`id`) BUCKETS 1
PROPERTIES (
"replication_allocation" = "tag.location.default: 1"
);
INSERT INTO test_sqlconvert VALUES(1, '2024-05-20 13:14:52', '2024-01-14',[1, 2, 3, 3], ['Hello', 'World']);
SET sql_dialect = presto;
SELECT CAST(start_time AS varchar(20)) AS col1,
array_distinct(arr_int) AS col2,
FILTER(arr_str, x -> x LIKE '%World%') AS col3,
to_date(value,'%Y-%m-%d') AS col4,
YEAR(start_time) AS col5,
date_add('month', 1, start_time) AS col6,
REGEXP_EXTRACT_ALL(value, '-.') AS col7,
JSON_EXTRACT('{"id": "33"}', '$.id')AS col8,
element_at(arr_int, 1) AS col9,
date_trunc('day',start_time) AS col10
FROM test_sqlconvert
WHERE date_trunc('day',start_time) = DATE '2024-05-20'
ORDER BY id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
Clickhouse
SET sql_dialect = clickhouse;
SELECT toString(start_time) AS col1,
arrayCompact(arr_int) AS col2,
arrayFilter(x -> x LIKE '%World%',arr_str) AS col3,
toDate(value) AS col4,
toYear(start_time) AS col5,
addMonths(start_time, 1) AS col6,
extractAll(value, '-.') AS col7,
JSONExtractString('{"id": "33"}' , 'id') AS col8,
arrayElement(arr_int, 1) AS col9,
date_trunc('day',start_time) AS col10
FROM test_sqlconvert
WHERE date_trunc('day',start_time)= '2024-05-20 00:00:00'
ORDER BY id;
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | col10 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+
| 2024-05-20 13:14:52 | [1, 2, 3] | ["World"] | 2024-01-14 | 2024 | 2024-06-20 13:14:52 | ['-0','-1'] | "33" | 1 | 2024-05-20 00:00:00 |
+---------------------+-----------+-----------+------------+------+---------------------+-------------+------+------+---------------------+