跳到主要内容

LLM_SIMILARITY

描述

判断两个文本之间的语义相似性

语法

LLM_LLM_SIMILARITY([<resource_name>], <text_1>, <text_2>)

参数

参数说明
<resource_name>指定的资源名称
<text_1>文本
<text_2>文本

返回值

返回一个 0 - 10 之间的浮点数。0 表示无相似性,10 表示强相似性。

当输入有值为 NULL 时返回 NULL

结果为大模型生成,所以返回内容并不固定

示例

假设我有如下表,代表某家快递公司收到的评论:

CREATE TABLE user_comments (
id INT,
comment VARCHAR(500)
) DUPLICATE KEY(id)
DISTRIBUTED BY HASH(id) BUCKETS 10
PROPERTIES (
"replication_num" = "1"
);

当我想按顾客语气情绪对评论进行排行时可以:

SELECT comment,
LLM_SIMILARITY('resource_name', 'I am extremely dissatisfied with their service.', comment) AS score
FROM user_comments ORDER BY score DESC LIMIT 5;

查询结果大致如下:

+-------------------------------------------------+-------+
| comment | score |
+-------------------------------------------------+-------+
| It arrived broken and I am really disappointed. | 7.5 |
| Delivery was very slow and frustrating. | 6.5 |
| Not bad, but the packaging could be better. | 3.5 |
| It is fine, nothing special to mention. | 3 |
| Absolutely fantastic, highly recommend it. | 1 |
+-------------------------------------------------+-------+